Insights
Industry
People
Culture
Brand Studio
Facebook Hub
Choueiri Group Deep Dives
OMD Corner
LEAD with ABG
Insights
Brand Studio
Facebook Hub
Choueiri Group Deep Dives
OMD Corner
LEAD with ABG
ABOUT US
CONTACT US
ADVERTISE WITH US
Insights Industry
Back
AI Reflects The Biases Of Its Creators
By Arjun RKSun, Aug 18 2019

Contact
ai-reflects-the-biases-of-its-creators

Last February at the World Government Summit 2019 in Dubai, Christine Lagarde, the first woman managing director of the International Monetary Fund (IMF), sat in front of her audience and gave them some news: “AI and the fourth industrial revolution will have a more severe impact on women than men,” she told the crowd, explaining that’s “not because women are stupid, but simply many of the tasks done by women are more routines tasks, are more easily automated.” She added that 11% of women’s jobs will be affected by technology in the future, compared to 9% for men.  

Source: World Economic Forum

The way in which AI could potentially reduce the need for specific segments of the human workforce is indeed a massive concern, but it falls within a larger issue related to the way artificial intelligence will interact with various human groups and categories: bias. As explained by Theodoros Evgeniou, one of the most urgent AI issues to be looked into today is fairness; how algorithms can reproduce the bias of developers, or even create their own biases due to flawed original datasets. 

For example, a research conducted by the university of Virginia in 2016 showed that two large image collections used in machine learning, one of which is backed by Microsoft and Facebook, demonstrated severe gender biases: images of shopping and cooking were linked to women, while visuals of coaching and shooting were associated with men.

Biased dataset, biased AI

The problem came most to the fore last April, when a group of AI researchers from Google, Facebook, Microsoft and various universities penned an open letter calling on Amazon (a frontrunner in the field) to stop selling its facial recognition technology to law enforcement. A study by the MIT Media Lab in January had indeed found that Amazon’s Rekognition had a significantly higher rate of errors when identifying an individual’s gender if they were female or darker skinned. “Flawed facial analysis technologies are reinforcing human biases,” Morgan Klaus Scheuerman, a PhD student at the University of Colorado Boulder and one of 26 signatories of the letter, told The Verge.

Another signatory, Caltech professor and former principal scientist at Amazon’s AWS subsidiary Anima Anandkumar, told Wired that the risks AI systems will cause harm to certain groups are higher when research teams are homogenous. Her work shows that as a group of similar people input data, their biases are entered into the algorithms as well, resulting in biased outputs. With only 12% of leading machine learning researchers being women, according to a research by Wired and Canadian startup Element AI, no wonder that the gender imbalance in the development field translates into skewed AI results. 

Even worse, machine learning doesn’t just mirror biases; it amplifies them, as explains Harvard PhD and data scientist Cathy O’Neil in her book Weapons of Math Destruction. O’Neil looked at how biases can manipulate mathematical models and ultimately reinforce discriminations. “Models are opinions embedded in mathematics,” she writes, warning that algorithms can affect our lives in aspects we wouldn’t even imagine, from finance to health, education, justice and recruitment.

Countering amplified discrimination 

If AI can be used anywhere, including HR departments that go through resumes, its embedded gender biases become more worrisome than what it first seemed. Take Amazon’s aborted AI hiring and recruitment system: the algorithm went through and analyzed candidates but displayed the exact same biases that Amazon has originally used the technology to avoid, rating male applicants better than females due to the dataset’s historical preference. 

Source: World Economic Forum

Writing for the World Economic Forum last January, Ann Cairns, vice chairman of Mastercard, says that “the major problem with AI is what’s known as ‘garbage in, garbage out’. We feed algorithms data that introduces existing biases, which then become self-fulfilling. In the case of recruitment, a firm that has historically hired male candidates will find that their AI rejects female candidates, as they don’t fit the mould of past successful applicants.” According to Cairns, inclusion, empowerment and equality can help yield better results. 

Similarly, Megan Bigelow, founder and president of PDX Women in Tech, a American nonprofit that strives to empower women and underrepresented groups in tech, tells Communicate that women and other minorities are indeed affected by AI due to the biases of scientists seeping into the technology. “Behind every new tech company or product are the humans who built it – each with their own assumptions, beliefs, values, biases, hopes and dreams,” she wrote in one of her pieces for Oregonbusiness.com in 2018. Bigelow also argues that to fix the problem, “First, we need to recognize that this is a problem for all of us, not just for women […] Diversity and inclusion are the right things to do for the healthy existence of humanity. Second, the systemic issue is a lack of financial access.” Therefore, people should get equal access to opportunities regardless of their background, gender or any other criteria. 

Moreover, developing and testing standards for AI to identify biases early on is yet another strategy scientists are exploring, even though “the question is: what will be included in the algorithm to adjust for such biases?”, as asks Abeer El Tantawy, an educational specialist working for a chemoinformatics company. 

MIT researcher and founder of the Algorithmic Justice League (a collective aiming to fight bias in algorithms) Joy Buolamwini’s thesis uncovered major racial and gender bias in AI services from multinationals such as Microsoft, IBM and Amazon. In her view, who, how and why we code matter. By answering these three questions, organizations can identify biases and curate training sets inclusively, taking into consideration the social impact of technology on people. 

And another team at MIT Computer Science & Artificial Intelligence Laboratory (MIT CSAIL) is working on a solution, building an algorithm that can “de-bias” the data automatically. This algorithm would be designed to look at hidden biases within the data but is yet to be tested. 

The search for solutions continues as AI evolves and increasingly becomes a reality, along with the challenges it brings.

This article has been part of Communicate’s June print edition.

 

RELATED TOPICS
Artificial Intelligence Biases Communicate Omnia Al Desoukie
MORE IN Industry
Industry
November 01, 2020 How to Build a Winning Gen Z Strategy on Mobile

App analytics and market data company, App Annie, have released a new report that sheds light on Gen Z’s mobile behavior, in order to help marketers develop effective strategies to reach them. 98% of Gen Z report owning a smartphone, on average receiving their first at the age of 10. They are also part of […]

Industry
October 28, 2020 Micro-Influencers Are Still an Important Channel in the Marketing Funnel

Experticity, the world’s largest community of influential category experts have released a new study that sheds new light on the importance of micro-influencers on the average consumer. The study was conducted with online interviews of more than 6,000 individuals from the United States drawn from Experticity’s micro-influencer network and the general population. In addition, more […]

Industry
October 28, 2020 Global Media Insight Report Provides Concise Picture of Media Trends in UAE & KSA

Market research companies eMarketer and Global Web Index have collaborated together to release the 10th edition of the global media intelligence report. The report is a detailed compilation of data and insights about internet users’ traditional and digital media usage in 42 key markets worldwide. Communicate will be highlighting the key trends that are shaping the […]

Industry
October 27, 2020 Socialbaker’s New Report Highlights Slow Return to Normalcy in Digital Space

Social Bakers, a global AI-powered social media marketing company has released the Q3 edition of their social media trends report. The report reveals where the industry is currently standing with regard to spending and engagement globally. Here are the key findings – ADVERTISING Worldwide ad spend increased by 56.4% in Q3 compared to where it […]

Subscribe to

our newsletter.

This site uses cookies: Find out more.

Logo
  • Insights
  • Industry
  • People
  • Culture
  • Brand Studio
  • Facebook Hub
  • Choueiri Group Deep Dives
  • OMD Corner
  • LEAD with ABG
  • About Us
  • Contact Us
  • Advertise With Us
  • Privacy Policy
  • Disclaimer
NEWSLETTER

Get a monthly round-up of Communicate's best insights

© 2020 communicateonline.me
About Us
Contact Us
Advertise With Us
Privacy Policy
Disclaimer
icon
icon
icon
icon
icon
© 2020 communicateonline.me